255 research outputs found

    Controlling high-harmonic generation and above-threshold ionization with an attosecond-pulse train

    Get PDF
    We perform a detailed analysis of how high-order harmonic generation (HHG) and above-threshold ionization (ATI) can be controlled by a time-delayed attosecond-pulse train superposed to a strong, near-infrared laser field. In particular we show that the high-harmonic and photoelectron intensities, the high-harmonic plateau structure and cutoff energies, and the ATI angular distributions can be manipulated by changing this delay. This is a direct consequence of the fact that the attosecond pulse train can be employed as a tool for constraining the instant an electronic wave packet is ejected in the continuum. A change in such initial conditions strongly affects its subsequent motion in the laser field, and thus HHG and ATI. In our studies, we employ the Strong-Field Approximation and explain the features observed in terms of interference effects between various electron quantum orbits. Our results are in agreement with recent experimental findings and theoretical studies employing purely numerical methods.Comment: 10 pages revtex and 6 figures (eps files

    Time-dependent Hartree-Fock theory of charge exchange: Application to He2+ + He

    Get PDF
    An application of the time-dependent Hartree-Fock (TDHF) theory of charge transfer in atomic collisions is presented. Probabilities for elastic and double symmetric charge exchange are calculated for a fixed laboratory scattering angle and for collision energies from 10 to 70 keV. The TDHF equations are solved using finite difference techniques and propagated in time using the Peaceman-Rachford alternating-direction implicit method. Plots of time-evolved charge densities are presented also

    Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation

    Get PDF
    We report theoretical investigations of the tomographic procedure suggested by Itatani {\it et al.} [Nature, {\bf 432} 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMO) using high-order harmonic generation (HHG). Using the limited range of harmonics from the plateau region, we found that under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wavefunction, but the symmetry of the HOMO and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. We also considered the possible removal or relaxation of the approximations used in the tomographic method in actual applications. We suggest that for chemical imaging, in the future it is better to use an iterative method to locate the positions of atoms in the molecule such that the resulting HHG best fits the macroscopic HHG data, rather than by the tomographic method.Comment: 13 pages, 14 figure

    Attosecond Control of Ionization Dynamics

    Get PDF
    Attosecond pulses can be used to initiate and control electron dynamics on a sub-femtosecond time scale. The first step in this process occurs when an atom absorbs an ultraviolet photon leading to the formation of an attosecond electron wave packet (EWP). Until now, attosecond pulses have been used to create free EWPs in the continuum, where they quickly disperse. In this paper we use a train of attosecond pulses, synchronized to an infrared (IR) laser field, to create a series of EWPs that are below the ionization threshold in helium. We show that the ionization probability then becomes a function of the delay between the IR and attosecond fields. Calculations that reproduce the experimental results demonstrate that this ionization control results from interference between transiently bound EWPs created by different pulses in the train. In this way, we are able to observe, for the first time, wave packet interference in a strongly driven atomic system.Comment: 8 pages, 4 figure

    Pulse-duration dependence of high-order harmonic generation with coherent superposition state

    Full text link
    We make a systematic study of high-order harmonic generation (HHG) in a He+^+-like model ion when the initial states are prepared as a coherent superposition of the ground state and an excited state. It is found that, according to the degree of the ionization of the excited state, the laser intensity can be divided into three regimes in which HHG spectra exhibit different characteristics. The pulse-duration dependence of the HHG spectra in these regimes is studied. We also demonstrate evident advantages of using coherent superposition state to obtain high conversion efficiency. The conversion efficiency can be increased further if ultrashort laser pulses are employed

    Quantum interference in laser-induced nonsequential double ionization in diatomic molecules: the role of alignment and orbital symmetry

    Full text link
    We address the influence of the orbital symmetry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. The interference patterns survive the integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron momentum distributions.Comment: 12 pages, 7 figures; some discussions have been extended and some figures slightly modifie

    Elliptical Trajectories in Nonsequential Double Ionization

    Full text link
    Using a classical ensemble method, nonsequential double ionization is predicted to exist with elliptical and circular polarization. Recollision is found to be the underlying mechanism and it is only possible via elliptical trajectories.Comment: Submitted to New Journal of Physic

    Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation

    Full text link
    We calculate angle-resolved above-threshold ionization spectra for diatomic molecules in linearly polarized laser fields, employing the strong-field approximation. The interference structure resulting from the individual contributions of the different scattering scenarios is discussed in detail, with respect to the dependence on the internuclear distance and molecular orientation. We show that, in general, the contributions from the processes in which the electron is freed at one center and rescatters off the other obscure the interference maxima and minima obtained from single-center processes. However, around the boundary of the energy regions for which rescattering has a classical counterpart, such processes play a negligible role and very clear interference patterns are observed. In such energy regions, one is able to infer the internuclear distance from the energy difference between adjacent interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional figure inserted for clarit

    Macroscopic studies of short-pulse high-order harmonic generation using the time-dependent Schrödinger equation

    Get PDF
    We consider high harmonic generation by ultrashort (27–108 fs) laser pulses and calculate the macroscopic response of a collection of atoms to such a short pulse. We show how the harmonic spectrum after propagation through the medium is significantly different from the single-atom spectrum. We use single-atom data calculated by integration of the time-dependent Schrödinger equation and propose a method, based on an adiabatic approximation, to extract the data necessary to perform a propagation calculation. © 1998 The American Physical Society

    Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra

    Get PDF
    We study the influence of phase matching on interference minima in high harmonic spectra. We concentrate on structures in atoms due to interference of different angular momentum channels during recombination. We use the Cooper minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure 2d harmonic spectra in argon as a function of wavelength and angular divergence. While we identify a clear CM in the spectrum when the target gas jet is placed after the laser focus, we find that the appearance of the CM varies with angular divergence and can even be completely washed out when the gas jet is placed closer to the focus. We also show that the argon CM appears at different wavelengths in harmonic and photo-absorption spectra measured under conditions independent of any wavelength calibration. We model the experiment with a simulation based on coupled solutions of the time-dependent Schr\"odinger equation and the Maxwell wave equation, including both the single atom response and macroscopic effects of propagation. The single atom calculations confirm that the ground state of argon can be represented by its field free pp symmetry, despite the strong laser field used in high harmonic generation. Because of this, the CM structure in the harmonic spectrum can be described as the interference of continuum ss and dd channels, whose relative phase jumps by π\pi at the CM energy, resulting in a minimum shifted from the photoionization result. We also show that the full calculations reproduce the dependence of the CM on the macroscopic conditions. We calculate simple phase matching factors as a function of harmonic order and explain our experimental and theoretical observation in terms of the effect of phase matching on the shape of the harmonic spectrum. Phase matching must be taken into account to fully understand spectral features related to HHG spectroscopy
    • …
    corecore